ACROPOLIS WORKSHOP

Tackling climate, fragility & finance challenges for the 2030 Agenda for Sustainable Development

ACademic Research Organisation for POLicy Support (ACROPOLIS) for the Belgian Development Cooperation

Bruno Verbist, KLIMOS

Egmont Palace – 20 April – 1000 Brussel
SDG’s 5 main areas

- Planet
- Environment
- People
- Society
- Prosperity
- Economy
- SDG 16: Peace
- SDG 17: Partnerships
2030 Agenda for Sustainable Development

1 Agenda
5 Main Areas
17 Goals
169 Targets
240 Indicators

1 No Poverty
2 No Hunger
3 Good Health
4 Quality Education
5 Gender Equality
6 Clean Water and Sanitation
7 Renewable Energy
8 Good Jobs and Economic Growth
9 Innovation and Infrastructure
10 Reduced Inequalities
11 Sustainable Cities and Communities
12 Responsible Consumption
13 Climate Action
14 Life Below Water
15 Life on Land
16 Peace and Justice
17 Partnerships for the Goals

THE GLOBAL GOALS
For Sustainable Development
Sustainability – ACROPOLIS - SDG’s

KLIMOS 13, 7, 15

Aid effectiveness and Fragility 16

BE-Find 17
ACROPOLIS KLIMOS
Generating Capacity for the Sustainability Transition

www.kuleuven.be/klimos
Environment: Is there a problem?

Planetary boundaries
Annual mean growth rate of CO$_2$ at Mauna Loa

Source: NOAA, March 2017; Washington Post, 13 March 2017
Research paper

Trees, forests and water: Cool insights for a hot world

David Ellisona,b,*, Cindy E. Morrisc,d, Bruno Locatellie,f, Douglas Sheilg, Jane Cohenh, Daniel Murdiyarsoi,j, Victoria Gutierrezk, Meine van Noordwijkl,m, Irena F. Creedn, Jan Pokornyo, David Gaveaui, Dominick V. Spracklenp, Aida Bargues Tobellaa, Ulrik Ilstedta, Adriaan J. Teulingq, Solomon Gebreyohannis Gebrehiwotr,s, David C. Sandsd, Bart Muyst, Bruno Verbistt, Elaine Springgayu, Yulia Sugandiv, Caroline A. Sullivanw

aDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
bEllison Consulting, Denver, CO, USA
cINRA, UR0407 Plant Pathology, Montfavet, France
dDepartment Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
eAgricultural Research for Development (CIRAD), Paris, France
fCenter for International Forestry Research (CIFOR), Lima, Peru
gDepartment of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
hTexas Law, University of Texas, Austin, TX, USA
iCenter for International Forestry Research (CIFOR), Bogor, Indonesia
jDepartment of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia
kWeForest, London, UK
lWorld Agroforestry Centre (ICRAF), Bogor, Indonesia
mPlant Production Systems, Wageningen University & Research, Wageningen, Netherlands
nDepartment of Biology, Western University, London, ON, Canada
oENKI, o.p.s. Trebon, Czech Republic
pSchool of Earth and Environment, University of Leeds, Leeds, UK

*Corresponding author.
Research paper

Trees, forests and water: Cool insights for a hot world

David Ellisona,b,*, Cindy E. Morrisc,d, Brun Daniel Murdiyarsoi,j, Victoria Gutierrezk, Jan Pokornýo, David Gaveaui, Dominick V Ulrik Ilstedta, Adriaan J. Teulingq, Solomo David C. Sandsd, Bart Muyst, Bruno Verbi. Caroline A. Sullivanw

aDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
bEllison Consulting, Denver, CO, USA
cINRA, UR0407 Plant Pathology, Montfavet, France
dDepartment of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
eAgricultural Research for Development (CIRAD), Paris, France
fCenter for International Forestry Research (CIFOR), Lima, Peru
gDepartment of Ecology and Natural Resource Management, Norwegian University of Science and Technology, Trondheim, Norway
hTexas Law, University of Texas, Austin, TX, USA
iCenter for International Forestry Research (CIFOR), Bogor, Indonesia
jDepartment of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia
kWeForest, London, UK
lWorld Agroforestry Centre (ICRAF), Bogor, Indonesia
mPlant Production Systems, Wageningen University & Research, Wageningen, The Netherlands
nDepartment of Biology, Western University, London, ON, Canada
oENKI, o.p.s Trebon, Czech Republic
pSchool of Earth and Environment, University of Leeds, Leeds, UK
Groundwater recharge
rainfall from terrestrial origin (recalculated by Basilovich al.)

Approximately a third comes from ‘local’ sources

1) Mackenzie river basin, 2) Mississippi river basin, 3) Amazon river basin, 4) West Afri-ca, 5) Baltics, 6) Tibet, 7) Siberia, 8) GAME (GEWEX Asian Monsoon Experiment) and 9) Huaihe river basin.

Origin and fate of atmospheric moisture over continents

Rudi J. van der Ent, 1 Hubert H. G. Savenije, 1 Bettina Schaefli, 1 and Susan C. Steele-Dunne 1

Figure 1. Global topography: height above Mean Sea Level (MSL), major rivers, and average horizontal (vertically integrated) moisture flux (1999–2008).
Why India and China should invest in draining the Sudd and letting the water evaporate in Egypt instead… and why West Africa should be opposed to it
Conclusion

• Fossil fuel emissions: largest cause for climate change

• Forest: important from a carbon perspective, but other functions (cooling, groundwater recharge, biodiversity, ...) become far more important
Thanks for your attention

• Questions?